If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4=7
We move all terms to the left:
2x^2+4-(7)=0
We add all the numbers together, and all the variables
2x^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $
| (25-7x)=16 | | (2x+1x)+1=10 | | 5x-1-5x+5x+1=2625 | | -4+6=-12x+104 | | 25x+2=125x+5 | | 3^(4x+1)=81 | | 3^4x+1=81 | | 5*3x-1=1/125.2x+3 | | 5^3x-1=1/125.2x+3 | | 1/5-4+x=25*x+3 | | 1/5-4+x=25x+3 | | 64^(3x-1)=8^(4x) | | 7-5x-3=49 | | 21/3t-22=4 | | -5(1-5x)+5(-8x-2)=-4+8x | | 3n(5n+10)=0 | | B=3/2(j-31) | | 5/2v-7=-5/6v-7/3 | | 7v^2-4=-8 | | |6x2+5|=17 | | w^2+5w-1800=0 | | 5-4n/2=8 | | 8-3x=15+5x | | P(x=5)=10C5(.64)^5(.36)^5 | | 82k=23k+25k | | 1/7x-1/7=1/7 | | -1/7x-1/7=1/7 | | x-(5/100)x=835200 | | x-6+4=16 | | 16k=10k+6k | | -6+9x=3/5 | | 8x+2+7=-15 |